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The nonlinear evolution of instabilities of a plane-parallel shear flow with an 
inflection-point profile is studied. The particular example of the cubic-profile flow 
generated in an inclined layer heated from above and cooled from below is chosen 
because it exhibits supercritical bifurcations for secondary and tertiary flows. Since 
the limit of small Prandtl number is assumed, buoyancy effects caused by temperature 
perturbations are negligible. The analysis describes first the transition to transverse 
roll-like vortices which become unstable a t  slightly supercritical Grashof numbers to 
a vortex-pairing instability with alternating pairing in the spanwise direction. 
Three-dimensional finite-amplitude solutions for this tertiary mode of motion are 
computed and discussed. Finally the question of the stability of the tertiary flow is 
addressed. 

1. Introduction 
Theoretical and experimental studies in recent years of subsequent instabilities in 

thermal convection and in circular Couette flow have led to a deeper understanding 
of the transition from laminar to turbulent fluid flow. For reviews of the sequences 
of bifurcations found in convection and in circular Couette flow see the articles by 
Busse (1981) and DiPrima & Swinney (1981). it is generally believed that similar 
sequences of bifurcations exist in problems of plane-parallel shear flow. But those 
bifurcations are usually not observable because they occur mostly subcritically. The 
most effective mechanism of shear-flow instability is prevented by the absence of an 
inflection point in the profile in typical cases of plane parallel flows such as Poiseuille 
or Hagen-Poiseuille flow. The resulting delay of the onset of instability by infinitesimal 
disturbances is the main reason for the subcritical finite-amplitude instability and 
the direct transition into a turbulent state of motion found in those cases. Numerical 
simulations (Orzag & Patera 1980; Orszag & Kells 1980) and stability studies of 
Tollmien-Schlichting waves (Herbert 1981 a ,  1983) have provided some insights into 
the mechanism of transition to turbulence to Poiseuille and plane Couette flow. For 
a review of recent theoretical and experimental work on the transition to turbulence 
in channel flow see Herbert (1981b). The complexity of instability of shear flows 
without inflection point, however, makes it difficult to get a comprehensive picture 
of the manifolds of solutions involved in the various bifurcations. For this reason a 
study of the series of bifurcations starting with the inertial instability of a shear flow 
with an inflection point is likely to shed some new light on the general problem of 
transition to turbulence in plane parallel shear flow. Moreover, the possibility of 
supercritical bifurcations offers new opportunities for comparison with experimental 
observations. This point of view has motivated the investigation presented in this 
paper. 
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Although the inertial mechanism of instability of plane parallel shear flow has been 
analyzed extensively since the early work of Helmholtz (1868) and Kelvin (187 1 )  there 
have been few opportunities for quantitative comparisons with laboratory 
measurements. According to Rayleigh (1 880) the inertial instability requires a point 
of inflection in the profile; but there are few plane-parallel flows with an inflection 
point which can be realized in the laboratory even in an approximate sense. The lack 
of observational evidence has inhibited to some extent the study of the post-instability 
problem. Benney & Bergeron (1969) have derived nonlinear inviscid solutions for the 
transverse ' cat's-eye '-like eddies that arise from the instability and later workers have 
taken into account the effects of viscosity (Haberman 1972; Huerre 1980; Huerre & 
Scott 1980). A weakly nonlinear analysis of growing two-dimensional disturbances 
has been given by Schade (1964) for the hyperbolic tangent profile which is the 
exemplary case of an inflexion-point profile. The stability with respect to two- 
dimensional disturbances of the periodic flow studied by Schade was investigated by 
Kelly (1967), who found growing disturbances with twice the wavelength of the 
secondary flow. Perhaps closest in its goals to  the present analysis is the work by 
Pierrehumbert & Widnall (1982) who studied the stability with respect to three- 
dimensional disturbances of a family of coherent shear-layer vortices described by 
a solution of the inviscid equations of motion found by Stuart (1967). Like most of 
the work mentioned above Pierrehumbert & Widnall (1982) neglect effects of 
viscosity even though the Reynolds numbers a t  which the transitions to two- 
dimensional and to three-dimensional motions must be expected are not very large. 
Aside from the effects of viscosity, the comparison with experimental observations 
is complicated by the choice of mathematically convenient but physically not 
realizable basic shear-flow profiles in the theoretical work. It thus seems of special 
interest to investigate secondary and tertiary flows arising from the instability of a 
basic flow that is an actual solution of the Navier-Stokes equation of motion for 
reasonable forces. I 

The plane-parallel flow on which the analysis of this paper is focused has a profile 
described by a cubic polynomial. It is realized when an infinitely extended fluid layer 
is bounded by two rigid planes that are kept a t  constant but different temperatures. 
The flow vanishes only in the exceptional case when the layer is horizontal with 
respect to gravity. To avoid any confusion with the problem of convective instability, 
we shall refer to the case of an inclined layer heated on the upper side even though 
buoyancy-driven instabilities do not occur in the limit in which the problem will be 
considered. The limit of vanishing Prandtl number P is not easily realizable in 
experiments because only liquid metals possess values of P that are small compared 
to unity. But results of linear stability theory indicate that hydrodynamic effects 
dominate over thermal effects even for P = 1, a t  least in the case of a vertical layer 
(Vest & Arpaci 1969). Thus reasonable agreement between theoretical predictions and 
experimental observations can be expected in the case of a vertical layer of air heated 
from one side and cooled from the other. As far as two-dimensional aspects of the 
problem are concerned, such a comparison is indeed possible, as will be pointed out 
later in this paper. But observations of three-dimensional structures are not available 
at this time. 

2. Mathematical formulation of the problem 
We consider a layer of a Boussinesq fluid inclined with the angle x with respect 

to the horizontal plane. The temperatures T,  and are prescribed on 
the upper and lower boundaries of the la,ycr. An angle x equal to or less than an: will 

with T2 > 
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FIQURE 1 .  Geometrical configuration of the inclined fluid layer heated from above and exhibiting 
a plane-parallel shear flow with cubic profile as basic solution. 

be assumed in general. For angles x > in, Tl is prescribed a t  the upper and T2 is 
prescribed a t  the lower boundary. Although the present analysis for the limit of 
vanishing Prandtl number is valid for this case as well, a competing thermal 
instability occurs a t  higher Prandtl numbers. Using the thickness d of the layer, d 2 / v  
and (T! - Tl)/Gr P as scales for length, time and temperature respectively, we write 
the equations of motion for the velocity vector u and the heat equation for the 
deviation 8 for the purely conductive state of the temperature distribution in 
dimensionless form : 

(2.1a) 
a 
at 
-u  + u*Vu = - Vn + Gr sin Xk.ri+ (cos Xk + sin xi) 0 + V2u, 

v * u  = 0, (2 . lb)  

(2.1 c )  
a 
--B+u.ve = -Gru.k+F1V2e.  
at 

The Grashof number and Prandtl number are defined by 

Gr = y g ( T , - q ) d 3 / v 2 ,  P = v/K, 

where v ,  K ,  y and g denote viscosity, thermal diffusivity, coefficient of thermal 
expansion and acceleration due to gravity respectively. The unit vectors k and i point 
in the directions normal and parallel to  the layer such that the direction of gravity 
is given by -cosxk-sinxi. Terms that can be written as gradients have been 
combined into the expression Vn. As indicated in figure 1 ,  we shall use a Cartesian 
system of coordinates with the origin on the median plane of the layer and with the 
z-and x-coordinates in the directions of k and i respectively. The basic solution of 
(2.1) exhibiting the same symmetry as the physical conditions of the problem is given 
by 

u = Ui = +iG( t z - z3 ) ) ,  8 = 0, (2.2) 

where the definition (3 3 Gr sin x has been introduced. The analysis of this paper is 
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concerned with the properties of solutions bifurcating from the basic state ( 2 . 2 ) .  The 
boundary condition 

used in deriving ( 2 . 2 )  could eventually be replaced by the condition 

u = o  ( z = + t )  ( 2 . 3 )  

u = +_ U,i ( z  = +a), ( 2 . 4 )  

giving rise to a manifold of solutions which can be analysed in the same way as the 
solutions satisfying ( 2 . 3 )  (Nagata 1983) ;  but in this paper the attention will be 
focused on the special case U ,  = 0. 

The stability of the basic solution ( 2 . 2 )  with respect to  infinitesimal disturbances 
has been studied by a number of authors as a function of the Prandtl number. 
Rudakov (1967) ,  Korpela, Gozum & Baxi (1973)  and Ruth (1979)  considered a 
vertical layer, x = in, and found that the critical Grashof number G, changes by less 
than ten per cent in the regime 0 < P < 10, while some change in the character of 
the solution occurs in the neighbourhood of P = 1.75. The instability is clearly 
hydrodynamic in origin, although thermal effects become noticeable for larger 
Prandtl numbers. I n  this paper we make use of the weak Prandtl-number dependence 
by assuming the limit of vanishing Prandtl number. I n  this limit thermal conduction 
is so effective in comparison with heat advection that the deviation 0 from the state 
of pure conduction vanishes even for general three-dimensional motions. 

It is convenient to separate the velocity field u into an average part oi and a 
fluctuating part H : 

u =  Oi+H, (2 .5 )  

where o(z, t )  i is equal to the average of u over x- and y-coordinates. I n  principle there 
could be an average component in the y-direction as well, but since such a component 
has not been encountered in the analysis i t  is not mentioned explicitly in (2.5). For 
the fluctuating component we introduce the general representation of a solenoidal 
vector field 

(2.6) H = V x (V x k@)  + V x k@ z S@ + E$ 
which allows us to eliminate (2 .1  b )  from the problem. By taking the z-components 
of the curl and the curl curl of ( 2 . 1 ~ )  the following equations are obtained: 

( 2 . 7 ~ )  

where A, = a Z / a x 2  + a2/ay2 is the two-dimensional Laplacian. 
The mean flow 0 is given by 

o =  U + D ,  

where 0 satisfies the equation 

The bar indicates 
Reynolds stress in 

the average over the x- and y-coordinates. If a non-vanishing 
the y-direction did exist, 
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then a component of the mean flow in the y-direction would be obtained. But in all 
cases investigated in the present work (2.9) was never satisfied. 

When (2.7) are linearized with respect to  $ and $, Squire's (1933) theorem is 
applicable. Arcordingly, the instability of the cubic profile flow (2.2) assumes the form 
of y-independent transverse vortices with vanishing function @. Since the inflection 
point coincides with the zero of the mean-flow profile (2.2) the phase velocity of the 
strongest growing vortices vanishes. Because of the symmetry of the problem the 
vortices remain steady with respect to the chosen frame of reference as they 
equilibrate a t  finite amplitude. The analysis thus starts with the derivation of 
two-dimensional steady finite-amplitude solutions of (2.7), (2.8) in $3. The stability 
of these solutions with respect to arbitrary infinitesimal disturbances is investigated 
in $4. Examples of three-dimensional finite-amplitude flow arising from those 
disturbances are computed in $5. Finally a stability analysis of the three-dimensional 
steady flow is given in $6. Thus the evolution from laminar to turbulent flow will 
have been followed up to the third bifurcation. 

3. Steady transverse vortices 
Finite-amplitude steady two-dimensional solutions of (2.7) and (2.8) can be 

obtained by representing 4 and 0 in terms of orthogonal functions satisfying the 
boundary conditions : 

$ = X , X a r , f ~ ( 4 e x p G m ~ 4 ,  ( 3 . 1 ~ )  
a m  

m=-m 1 - 1  

m 
0 == C, sin 2n7cz, 

n - 1  

where the functionz f i ( z )  introduced by Chandrasekhar (1961) are defined by 

The numbers pi and vi are defined as the positive roots of the equations 

( i  = 1,2 ,  ...). 
coth&i-cOt& = 0, 

tanh $vi - tan $ui = 0 

(3.lb) 

(3.3) 

According to  (3.2) the function fE(z) and its first derivative vanish a t  the boundaries 
z = +j, which ensures that both components of u vanish there. 

Because only x-derivatives of $ enter the basic equations, m = 0 can be excluded 
in the representation (3.1 a )  of $. Since $ is a real function, the complex coefficient 
must satisfy 

where the asterisk denotes the complex conjugate. The symmetry of the problem 
permitas the imposition of an additional const,raint 

ai, -m = a f m ,  (3.4) 

a?, (I+ m even), 

-a?, (Z+m odd). 
a,, = (3.5) 
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FIGURE 2. Convergence of coefficients anm and c, as functions of the truncation parameter N ,  for 
the Grashof numbers G = 8050 (solid lines, left ordinate) and G = 50000 (dashed lines, right 
ordinate). The truncation parameter N ,  for the coefficients C, is given by N ,  = N , + 3 .  The 
wavenumber a = 2.6 was used. 

This symmetry would be destroyed if the mean-flow profile was no longer antisym- 
metric with respect to z = 0, as for example in the case of a superimposed Poiseuille 
flow. 

By multiplying (2.7) by fh(z) exp { - ipaz} and (2.8) by sin 2vnz and averaging the 
result over the fluid layer, nonlinear algebraic equations for the coefficients a,,, G, 
are obtained. As the parameters A ,  p, v run through all admissible integer values, an 
infinite system of equations results which must be truncated in order to  permit a 
numerical solution. Guided by the experience in related problems of convection (Busse 
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FIGURE 3. The Grashof number G as a function of the wavenumber a according to linear theory 
(solid line). Dots indicate parameter values for which nonlinear two-dimensional solution have been 
obtained. Open circles indicate points when attempts to obtain a nonlinear solution failed. 

1967; Clever & Busse 1974), we shall neglect all coefficients and all equations with 
subscripts satisfying the conditions 

1+Jml > N , ,  n > N, .  (3.6a, b )  

The resulting finite system of equations is solved by a Newton-Raphson iteration 
method. The truncation parameters N ,  and N ,  are then each increased by 2 and the 
new solution is compared with the old one. If the coefficients with low subscripts 
change very little and if mean quantities such as the momentum transport by the 
vortices change by less than a few percent, the numerical approximation is regarded 
as satisfactory. The choice N ,  = 11, N ,  = 8 was used in most calculations. N ,  = 6 
would be consistent with N ,  = 11 ; but, since an increase in N ,  is not as costly as an 
increase of N ,  in terms of computational expenses, a somewhat larger value of N ,  
has been used. 

To test the rate of convergence of solutions with increasing N, ,  the truncation 
parameter has been increased to a value as high as N ,  = 14 for some solutions. 
Figure 2 shows that typical coefficients exhibit little change for N ,  3 1 1 .  This appears 
to be true even for values of G as high as G = 5 x lo4, although N ,  = 12 provides a 
noticeable improvement over N ,  = 11.  But, since most of the analysis is focused on 
properties of the solutions a t  lower values of G, the truncation N ,  = 11 appears to 
be sufficiently accurate. 

Steady solutions have been obtained for numerous values of G exceeding the critical 
value of G, = 7930.0 determined by linear theory as shown in figure 3. No subcritical 
finite-amplitude solution was found. But for values of a beyond the critical value 
a, = 2.69, steady solutions exist outside the region bounded by the function G(a) 
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FIGURE 4. The momentum transport M as a function of the wavenumber a for 
three different Grashof numbers G. 

deduced from linear theory, the function G(a) increases rather steeply such that it 
becomes difficult to  determine i t  for a 2 5 .  The boundary of the region of nonlinear 
solutions increases more gradually with a. The nonlinear nature of this boundary can 
be seen in the momentum transport plotted in figure 4 and discussed below. 

For a S 1.8 a steady solution could not be obtained. The numericai method 
produced instead the solution with 2a as basic wavenumber. It is evident from figure 
3 that  the wavenumber below which steady solutions could not be obtained 
corresponds to one half of the wavenumber at the boundary of the region of steady 
solution on the right. A similar phenomenon has been observed in computations of 
convection rolls (Clever & Busse 1974). Because of an additional symmetry property 
in the latter problem, solutions could not be obtained if 3a (instead of 2a) was within 
the domain bounded by the curve derived from linear theory. Because the Eckhaus 
instability always precedes the numerical instability, the steady solutions affected 
by the latter are not of much interest. 

A measure of the strength of the transverse vortices can be obtained from the 
change of the stress exerted on the boundaries. Integration of equation (2 .8)  yields 

(3.7) 

where the angle brackets indicate the average over the entire fluid layer. The last 
term in (3.7) is the constant of integration, which has been determined such that 0 
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FIGURE 5 .  The mean flow 0 as a function of z for different Grashof numbers C x  lop3. The 
wavenumber a of transverse vortices is fixed at 2.6. The profile I.? is antisymmetric with respect 
to z = 0. The undisturbed flow 0 = U is indicated by b. 

vanishes a t  the boundaries. This constant enters the expression for the dimensionless 
momentum transport a t  z = && 

The expression (3.8) has been plotted as a function of a for various values of G in 
figure 4. The transverse vortices strongly reduce the stress exerted on the boundaries. 
Vortices with wavenumbers a outside the central range are not as effective in 
transporting momentum, but they retain a finite amplitude as a: approaches the 
largest value for which solutions could be obtained for G = 2 x lo4 and G = 3 x lo4. 
This property proves the finite-amplitude character of solutions a t  the dashed 
boundary of figure 3. 

Since the transverse vortices tend to homogenize the mean momentum in the 
interior of the layer, the mean vorticity is reduced. Figure 5 shows that the profile 
of the mean flow retains approximately its cubic shape. A saturation effect is 
noticeable in so far as there is relatively little change between the curves for 
G = 2.5 x lo4 and G = 5 x lo4. As must be expected from our above discussion, the 
reduction of the mean flow is largest for vortices with wavenumbers in the central 
regime around a: = 3.0 as shown in figure 6. 

In order to visualize the transverse vortices, both the disturbance stream function 
a$/ax and the stream function of the total flow have been plotted in figure 7 .  The 
inclination of the boundary between the rolls shown in the upper part of the figure 
indicate the momentum transport in the direction opposite to the viscous stress of 
the cubic profile in the median plane of the layer. In  the lower part of the figure the 
familiar ‘ cat’s-eye ’ pattern is exhibited. This streamline picture resembles closely the 
observed one in the experiments of Vest & Arpaci (1969). While the gross properties 
of the two-dimensional steady flow remain approximately valid after three- 
dimensional steady disturbances develop, the streamline pattern and other details 
of the flow will be changed. Before proceeding to the discussion of three-dimensional 
steady flows, we describe the stability properties of the transverse-vortex flow. 
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FIQURE 6. The mean flow 0 as a function of z for different wavenumbers at a fixed Grashof 

number G = 30000. The undisturbed flow 0 = U is indicated by b .  

X U  

FIQURE 7 .  The stream function a$/ax of the transverse vortices (upper par t )  and the streamfunction 
&++$/ax of the total flow (lower par t )  for a = 2.6, G = 9000. Constant values of a$/ax at 
increments of 20% of the maximum value are drawn in the upper par t  (negative contours are 
dashed). I n  the lower part the stream function is plotted with increments of 2. 

4. Instabilities of transverse vortices 
In order to investigate the stability of the steady transverse vortex solutions 

described in the preceding section we superimpose arbitrary three-dimensional 
infinitesimal disturbances and compute their growth rates. The steady solutions are 
unstable whenever growing disturbances are found. Since the equations for the 
disturbances are linear homogeneous and do not depend explicitly on y and t ,  an 
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exponential dependence on the latter two coordinates can be assumed. Describing 
the disturbance of the steady solution g5 by 6, J ,  we arrive a t  the general ansatz 

c o r n  

6 = Z Z a"l,fl(z)exp{imax+idz+iby+at}, (4 .1  a )  
rn=-co l=l  

where the functions g l ( z )  satisfying the boundary conditions for $ are defined by 

g l (z )  = sinZn(z+$) ( I  = 1 , 2 ,  ...). (4 .2 )  

In contrast with the representation ( 3 . l a ) ,  the summation ( 4 . 1 ~ )  includes m = 0. 
Since the finite value of d2 + b2 will be assumed throughout this section, there is no 
contribution to a perturbation of the mean flow 0. Disturbances with d = b = 0 are 
actually included in the analysis of the steady solution, even though the Newton- 
Raphson iteration models simulates only approximately the approach in time 
towards the steady solution. The boundary in figure 3 beyond which steady solutions 
could not be obtained, for example, is due to  this instability; disturbances with twice 
the wavenumber replace the steady solution beyond that boundary. This boundary 
should not be called a stability boundary, however, since disturbances of the same 
character but with finite d grow more strongly than those with d = 0 and the 
appropriate stability boundary is thus given by the dashed line in figure 9. 

The equations to be satisfied by 6, $ are given by 

( 4 . 3 a )  

d A. 

V2A2$- {oG+a A , J + - U i b A 2 6 - ~ . { ( S 6 + ~ J ) . V S g 5 + S g 5 . V ( S ~ + ~ J ) )  = 0. 

(4 .3  b)  
a dz 

After multiplying ( 4 . 3 ~ )  and ( 4 . 3 b )  by fA(z)exp{ -i(puz+dx+ b y ) - a t } ,  and by 
gA(z)  exp { - i(pax+ dx + by)  - a t }  respectively, and averaging the result over the fluid 
layer, a system of linear homogeneous equations for the coefficients a",, and 6,, is 
obtained with F as eigenvalue. I n  order to  evaluate the eigenvalues u of interest, the 
infinite system of equations must be trancated. I n  general, the same truncation level 
( 3 . 6 ~ )  was used as in the case of the steady solution. Since the eigenvalues a of interest 
have nearly vanishing real part and either a zero or a relatively small imaginary part, 
they are not much affected by the truncation level if a well-approximated steady 
solution is used. 

For a given steady solution characterized by the parameters G and a, the 
eigenvalue a with maximum real part is determined as a function of b and d. Figure 
8 indicates that  there are typically two eigenvalues, a real one and two complex- 
conjugate ones whose real parts can reach positive values. In  the limit of infinite 
truncation parameter N the results plotted in this figure are strictly periodic in d with 
period u. Because of the finite truncation, small deviations from periodicity are 
noticeable. By calculating the maximum real part at several Grashof numbers the 
value of G can be determined by interpolation at which the maximum real part of 
a changes sign. This Grashof number as a function of u defines the stability boundary 
of the steady transverse vortices in the (G, a )  parameter space. As shown in figure 9, 
this stability boundary is given by the monotonically growing disturbances. But, 
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FIGURE 8. Real parts of u as a function of b and d for G = lo4, a = 2.6. The upper part shows lines 
of constant growth rate (indicated by the numbers) for the monotone instability, the lower part 
shows the real part of (I for the oscillating instability. 

since the oscillatory instability corresponding to  the eigenvalue with finite imaginary 
part exhibits a maximum real part of nearly the same magnitude as the monotone 
instability, its stability boundary is also shown in figure 9. The value of b a t  the onset 
of the monotone instability changes little along the solid curve of figure 9 varying 
between 1.5 and 1.6, but the maximum growthrate always corresponds to d = +a. 

The Eckhaus instability which bounds the domain of the stable transverse vortices 
towards larger and lower wavenumbers derives its name from the first study of the 
stability of Tollmein-Schlichting waves (Eckhaus 1965). A flaw in this work was 
pointed out by Stuart & DiPrima (1978), who also demonstrated the equivalence 
between the Eckhaus instability and the sideband instability of Benjamin & Feir 
(1967). The Eckhaus or sideband instability is characterized by b = 0 and thus does 
not depend on the third dimension. The growth rate cr as a function of d is 
shown in figure 10 for some typical wavenumbers. A characteristic property is the 
minimum of (T a t  d = &a, which indicates that  an instability introducing vortices with 
twice the wavelength of the original vortices is not preferred. This result differs 
considerably from the conclusions of Kelly (1967) and Pierrehumbert & Widnall 
(1982) based on inviscid analysis. These authors considered only the case d = ;a and 
found an instability owing to  the growth of subharmonic vortices. No indication of 
such an instability was found in the present analysis since the Eckhaus instability 
only limits the wavenumber domain of stable vortices, but does not cause a transition 
as the Grashof number is increased at a fixed value of 01. 

Since the flow generated by the monotone instability will be discussed in $ 5 ,  we 
briefly describe here the spatial structure of growing oscillatory disturbances. 
Figure 11 shows the wavy structure which develops if a growing disturbance 
multiplied by an arbitrary amplitude factor is superimposed onto the steady 
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FIWRE 9. Sta.bility regime of transverse vortices. The outer parabolic curve (long dashes) indicates 
results of linear theory. The region of stable vortices is bounded by the Eckhaus stability boundary 
(short dashes) from below and the monotone instability (solid line) from above. The boundary of 
onset of oscillatory instability (dotted line) is also shown. Steady solutions could not be obtained 
in the region left of the dash-dotted line. 

transverse vortices. The waves propagate in the positive or negative y-directions. 
Standing waves correspond to  the superposition with equal amplitude of both 
propagating wa.ves are also a plausible possibility. Associated with the oscillation is 
the generation of vertical vorticity described by the function $, which is shown in 
figure 12. The vertical vorticity is mainly caused by the advection of the mean 
momentum by the poloidal component of the disturbance described by 4. 

The oscillatory instability corresponds to d = 0, in which case disturbances of the 
form (4.1) separate in two classes of different symmetry. The determinant determining 
the eigenvalue u becomes the product of two determinants corresponding to  

class A: 

class B : a",, = f d,*, (I+m{y:;). 

d,, = & dl*, ( 4 . 4 ~ )  

(4 .4b)  



14 M .  Nagata and F. H .  Busse 

I 

FIGURE 10. The growth rate of the Eckhaus instability as a function of d for several 
wavenumbers a at G = 9000. 

Disturbances of class A exhibit the same symmetry (3.5) as the steady transverse 
vortices and do not give rise to instability in range of G studied in this paper. A special 
disturbance of class B corresponding to  cr = 0 is given by $ = a$/ax and describes 
an infinitesimal translation of the steady vortex solution. As in the case of convection, 
the oscillatory instability represents a modification of the translational disturbance 
(Busse 1972). The details of the dependence of the eigenvalue cr on b are complicated 
by the fact that the imaginary part vanishes for sufficiently small values of b as shown 
in figure 13. The eigenvalue start,ing with cr = 0 a t  b = 0 joins with another real 
eigenvalue cr as b increases, a t  which point t'he two eigenvalues separate into two 
complex-conjugate eigenvalues. For low values of G the same process occurs in reverse 
order as b exceeds a second critical value. For supercritical Grashof numbers the real 
part of the complex eigenvalue reaches a maximum around b = 2.0. The value of b 
that  maximizes the growth rate changes little as a function of a, and the dotted curve 
in figure 9 has therefore been obtained by calculating the Grashof number a t  which 
the real part of cr changes sign for b = 2.0. 

This oscillatory instability is closely related to  the oscillatory instability discussed 
by Pierrehumbert & Widnall (1982), although some of the properties are quite 
different. I n  their case two imaginary eigenvalues cr join as b increases and are 
transformed into two complex-conjugate eigenvalues. Because of the absence of 
dissipation there is no clear maximum a t  which the growth rate peaks, while in the 
present case a preferred wavenumber b z 2 is clearly discernible. But in their spatial 
dependence the two forms of oscillatory instability resemble each other closely. 
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FIQURE 11. Lines of constant vertical velocity u, = - A 2 4 - ~ A 2 &  in the case of oscillatory 
instability for G = 9000, CL = 2.6, b = 2.0. The factor E denotes the amplitude of the oscillatory 
disturbance and has been fixed a t  some small, but otherwise arbitrary, value. Negative values of 
u, are indicated by dashed lines. 

FIQURE 12. Lines of constant values of + + E $  in the case of oscillatory instabilit,y for 0 = 9000, 
a = 2.6, 6 = 2.0. The value of E is the same as in figure 1 1 .  Negative values of $ are indicated by 
dashed lines. 
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5. Steady three-dimensional flow 
The finding that two-dimensional vortex flow becomesunstable to  three-dimensional 

disturbances relatively soon after the Grashof number exceeds its critical value has 
stimulated the attempt to study three-dimensional solutions of the basic equations 
( 2 . 7 ) .  Obviously the cost of computing is increased considerably in this step from two 
to  three dimensions, and only a rather restricted exploration of the tertiary flow and 
its instabilities could be accomplished. 

Since the monotone instability limits the region of stable secondary flow in the form 
of transverse vortices, only steady three-dimensional solutions have been investigated. 
The maximum growth rate of the monotone instability as a function of the 
wavenumbers b and d motivates the choice of parameters. I n  particular, because of 
the wavelength-doubling property of the instability, a wavenumber a equal to one 
half of the corresponding wavenumber of transverse vortices is chosen. Accordingly 
the following representation for 4 and @ is assumed: 

(5.1 b )  

where 1 runs through positive integers only, while m and n run through both positive 
and negative integers excluding the case m = n = 0. Without losing generality i t  can 
be assumed that 9 is a symmetric function of y. The symmetry of (2 .7 )  then requires 
that @ is antisymmetric in y : 
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Because (5.1) are real, the complex conjugate of the coefficients almn, blmn is obtained 
when both subscripts m, n change sign. There are further symmetry properties which 
can be used to  restrict the number of unknowns. Because the solution of the form 
(5.1) bifurcates from a y-independent solution with vanishing coefficients for odd 
values of m, the symmetry properties 

almn = blmn = 0 (m+nodd),  (5.3a) 

(5.3b) 

(5 .3c )  

are obtained. These properties do not include the property (3 .5)  of the two-dimensional 
solution (3.1 a). But, if that  solution is shifted by half a wavelength in the x-direction, 
then 

(5.4) 

is obtained instead of (3.5), in agreement with property ( 5 . 3 b )  if i t  is remembered that 
(5.4) applies to those coefficients almn for which n vanishes and m is an even integer. 
In  addition to the representations (5.1), the description (3.1 b )  for the mean flow must 
be included in the analysis of the problem. 

After introducing (5.1), (3.1 b)  into (2.7), (2.8), and after multiplying the equations 
by the complex conjugates of the expansion functions and averaging them, nonlinear 
algebraic equations are obtained for the coefficients almn, blmn and C,. For the 
numerical solution, coefficients and equations with subscripts satisfying 

2Z+Iml+21nl > NT, k > N,* (5.5a, b )  

have been dropped in analogy to the truncation (3.6). The truncation (5.5a) takes 
into account the fact that  the transverse-vortex solution from which the presently 
considered three-dimensional solution bifurcates corresponds to even subscripts m. 
Typical values of the truncation parameter are N;" = 14, N,* = 6, which appear to 
provide an adequate approximation of the three-dimensional solution. Since this 
truncation leads to  a total of 102 unknowns, the approximation could not be tested 
as extensively as in the two-dimensional case. Although not as many higher 
harmonics in the x- or z-directions are taken into account, the convergence appears 
to be faster because of the additional degree of freedom available in the three- 
dimensional solution for the dissipation of energy. 

Solutions of the form (5.1) have been obtained for selected values of G, a and p. 
Since the monotone instability does not depend strongly on a, the latter parameter 
has been fixed a t  a = 1.3 for the majority of computations. There exists a finite range 
of wavenumbers /3 for which three-dimensional solutions could be obtained. Although 
the critical wavenumber /3 is 1.6 for a = 1.3 (corresponding to a = 2.6 of the trans- 
verse vortices), p = 2.0 appears to be preferred at higher Grashof numbers, as indi- 
cated by maximum growth rate on figure 8. The three-dimensional flow appears to 
evolve smoothly from the transverse-vortex solution as G increases beyond the 
stability boundary of figure 9. There is no indication of subcritical finite-amplitude 
three-dimensional flow. The distortion of the transverse vortices by the three- 
dimensional effects is shown in figure 14. The corresponding pattern of the function pb 
is displayed in figure 15. As the disturbance of the two-dimensional structure grows 
to large amplitudes a t  the higher values of G, the pairing of neighbouring vortices 
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0 

FIGURE 14. Lines of constant vertical velocity u, = -AE$ in the plane z = 0 for G = 9000, 
a = 1.3, /I = 2.0. Lines corresponding to negative values are dashed. 

0 

FIGURE 15. Lines of constant $ in the plane z = 0 for G = 9000, a = 1.3, /I = 2.0. 
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FIQURE 16. Velocity vectors in the planes y = nn/4p, n = -2 ,  - 1, 0, 1 ,  2; 
for G = 12000, a = 1.3, p = 2.0. 

becomes apparent, alternating in the forward and backward directions. Figure 16 
indicates that the ‘cat’s-eyes’ shift forward and backward in a periodic manner along 
the spanwise coordinate and join with the neighbouring ‘cat’s-eyes ’ in the streamwise 
direction. Because of the slight tilt of the transverse vortices, the forward-moving 
sections of these vortices tend to  be elevated while the backward-moving parts tend 
to descend. The x, y-components of vorticity shown in the plane z = 0 (figure 17) 
indicate clearly the alternating pairing of vortices. I n  this respect the present results 
support the interpretation of the corresponding instability in the inviscid analysis 
of Pierrehumbert & Widnall (1982, see their figure 6). It should be noted, however, 
that the ‘cat’s-eyes’ do not necessarily indicate a local maximum of vorticity. 
Stretching and compression of vortex tubes have a strong effect on the magnitude 
of the vorticity vector, as is evident when figure 17 is considered in conjunction with 
figure 18, which exhibits the spanwise component of the velocity field. 

A different interpretation of three-dimensional solution is based on the triad 
interaction of the three planar waves in the (z, y)-plane with wavevectors ( f 2a, 0),  
( fa,  p), ( fa ,  -p). A resonant-triad interaction was proposed by Craik (1971) as the 
dominant nonlinear process in the instability of plane boundary layers. I n  the present 
case no resonance is required because of the symmetry of the problem. I n  contrast 
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FIGURE 17. The horizontal component of the vorticity vector in the plane z = 0. Shaded areas 
indicate a positive value of the vertical component of the vorticity vector. The arrows show the 
bending of vortex tubes in the forward and backward direction indicating the pairing of the 
transverse vortices. See figure 16 for comparison. 

to the scenario proposed by Craik the triad interaction is actually less effective in 
transferring energy from the mean flow into fluctuating motion than the transverse 
vortices. This is apparent in figure 19, where the energies of the different components 
of motion have been plotted. The main transfer of energy is from the transverse 
component of the vortices into the longitudinal components, while the total energy 
of the fluctuating motion is nearly the same as for the two-dimensional solution. 

As suggested by figure 19, the amplitude of the mean flow is larger for the 
three-dimensional solution than for the two-dimensional solution at the same Grashof 
number, but the positions of the extrema in the profile o ( z )  remain unchanged. Only 
the shear d Old2 at the median plane of the layer is slightly less in the three-dimensional 
case, in accordance with the property that the curvature of the profile o(z) near the 
median plane is decreased. The instability of the transverse vortices thus leads to  a 
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FIGURE 18. The y- and z-components of the velocity vector in the planes 
x = nn/4a, n = 0, 1, 2, 3, 4. 

three-dimensional flow whose momentum transport is slightly more effective near the 
middle of the layer, but which overall is significantly less effective than the 
two-dimensional flow. 

6. Instabilities of steady three-dimensional flow 
The fact that  monotone and oscillatory instabilities of transverse vortices are 

occurring in close competition according to  figures 8 and 9 suggests that  the 
three-dimensional flow discussed in $5  may not be very stable. Indeed, as will become 
apparent in the following, the oscillatory instability is only slightly suppressed by 
the growth of three-dimensional structure. It reappears in a modified form a t  higher 
Grashof numbers and ultimately leads to the destruction of the three-dimensional 
steady flow. 
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FIGURE 19. Average kinetic energies of primary, secondary, and tertiary steady flows. The 
definitions 

E, = (P), E, = ( @ ) - E o ,  E, = (1#V2A2q51,,-,) with a = 2.6, 

E3 = ( I q 5 V 2 A 2 ~ I , + , + I ~ A 2 $ ~ )  with a = 1.3, /I= 2.0 
have been used, where the subscript n refers to  the spanwise wavenumber included in the funtion 
4. E, thus describes the kinetic energy of the fluctuating component of motion which does not 
depend on y, while E, describes the kinetic energy of the velocity component with zero mean in 
the y-direction. 

The primary solution of the basic equations is indicated by a solid line for G < 7930 and by a 
dotted line for G 2 7930. The second solution is given by the solid line for 7930 < G < 8400 and 
by a dashed line thereafter. For G 2 8400 the solid line describes the tertiary solution. 

I n  analysing disturbances of the steady three-dimensional flow we are particularly 
concerned with instabilities introducing new wavenumbers in the y-direction. In order 
to reduce the complexity of the instability analysis we therefore neglect the Floquet 
exponent for the x-dependence and assume as representation for the disturbances 

J = Z g Z m n  exp {i(max + n p y )  + iby + a t }  g l ( z ) .  ( 6 . l b )  

Because of the symmetry properties (5.2), (5 .3)  of the steady three-dimensional 

l , m , n  
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solution, the stability equations for disturbances of the form (6 .1)  permit the 
following classes of solutions : 

class A :  Glmn = 0 (m+n odd), (6 .2a)  

(6 .2b)  

class B: tilmn = 0 (m+n odd), ( 6 . 3 ~ )  

(6.3 b )  

In addition there are two classes differing from classes (6 .2) ,  (6 .3)  only in that Glmn 
vanishes for even m + n instead of odd m + n. But these latter classes are represented 
by (6 .2) ,  (6 .3)  if b is replaced by b f p .  They thus require no separate considerations. 

The two classes of disturbances (6 .2)  and (6 .3)  can be characterized to some extent 
by two special disturbances given by 

a - a  
a Y  a Y  

6 = -$, $ = -$ in the case of class A; 

(6 .5)  
a - a  

ax 6 = &$, $ = -$ in the case of class B. 

These disturbances correspond to infinitesimal translations of the steady solution in 
the y- and x-directions respectively, and thus solve the stability equations for 
b = u = 0.  For finite values of b the disturbances of classes A and B do not exhibit 
a particular symmetry with respect to the y-direction, but with respect to the 
x-direction disturbances of class B tend to shift the phase of the steady solution, in 
contrast with those of class A. 

with largest real part as a function of b indicate 
that the most strongly growing disturbances belong to class B. In particular, a 
disturbance with finite imaginary part ui attains a maximum real part for b = 1 + np, 
n = 0, _+ 2, . . . , which becomes positive when G exceeds the critical value G(O) = 1 1  060. 
Because of the symmetry property (6 .3a)  u must be a periodic function of b with 
period 2p in the limit of infinite truncation parameter. As discussed in $4 ,  this 
periodicity is only approximately realized in the case of a finite truncation N*.  The 
oscillatory instability represents a period-doubling subharmonic disturbance with 
respect to the spanwise dependence of the steady three-dimensional flow. The 
structure of the latter is shifted backward and forward periodically in time and with 
a wavelength twice that of the steady flow in the spanwise direction. The fact that 
the wavelength in the spanwise direction is also twice as big as that of the oscillatory 
instability of transverse vortices exhibited in figure 8 ( b )  is not surprising, since the 
streamwise wavelength has doubled in the transition from two-dimensional to 
three-dimensional flow. The frequency of oscillation is k 4 . 6  at G = G(O), which is 
relatively small in comparison with the values shown in figure 13. Part of this decrease 
can be attributed to the larger wavelength of the steady flow in the streamwise 
direction. The remaining discrepancy may be caused by the weakened transverse 
vortex component of the three-dimensiona1 flow. 

Because of the high costs of computations of the eigenvalues - the rank of the 
stability matrices is typically 214-only a limited number of cases have been 
explored, and our conclusions depend on a smooth dependence of the eigenvalues u 

Computations of the eigenvalues 
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on the parameters of the problem. The parameters a and p of the steady solution 
were usually restricted to the values 1.3 and 2.0 respectively, although some 
computations have been carried out with p = 2.5 at higher values of the Grashof 
number. More detailed computations would be warranted if contact with the 
experimental evidence could be made. But little appears to be known either from the 
experiments of Thomas & Saric (1981) or others about the nature of the breakdown 
of the three-dimensional staggered structures which most closely appear to resemble 
the three-dimensional steady solution studied in this paper. 

7. Discussion 
The symmetry with respect to  the median plane of the layer in the problem 

considered in this paper is responsible for the particularly simple transitions to 
three-dimensional forms of motion that have been analysed in the preceding sections. 
Even in the transition to the tertiary mode of flow, no time dependence is introduced, 
and the complexities of interacting waves propagating with different phase velocities 
are avoided. It is desirable to study the problem experimentally, since the available 
laboratory data do not provide information about three-dimensional aspects of the 
motion. 

There are a variety of mechanisms of transition to three-dimensional flow in shear 
layers that have been discussed in the literature. The experimental evidence indicates 
that  slight changes in the shear-flow profile or in the level of noise present in the 
experimental apparatus may lead to  qualitatively different transitions (see e.g. 
Thomas & Saric 1981). The close competition between different mechanisms of 
instability such as the monotone and oscillatory instability discussed in $4 is likely 
to  be responsible for this experimental phenomenon. While the physical effects that  
may lead to the predominance of one or the other mechanism of instability could not 
be studied in this paper, some general properties can be recognized. The comparison 
of the present analysis with that of Kelly (1967) and Pierrehumbert & Widnall(l982) 
suggests that  in the absence of boundaries the two-dimensional wavelength-doubling 
instability is preferred, in contrast with the three-dimensional subharmonic instability 
of the present analysis. This finding agrees with the observed two-dimensional vortex 
pairing in mixing layers (Brown & Roshko 1974), while a staggered pattern like the 
one shown in figure 17 is observed in the breakdown of two-dimensional Tollmien- 
Schlichting waves in boundary layers (Thomas & Saric 1981). The importance of the 
boundaries in favouring the three-dimensional subharmonic instability investigated 
in this paper is also supported by the analysis of Herbert (1983) of the instability 
of Tollmien-Schlichting waves in plane Poiseuille flow. 

There is another instability introducing three-dimensional structure in transverse 
vortices without changing the phase of those vortices. This instability is characterized 
by a value of b of the same order or larger than the wavenumber a of the transverse 
vortices. It appears to  give rise to longitudinal vortices of alternating sign (Breidenthal 
1982). The fact that  this instability was not found in the present analysis, a t  least 
not a t  Grashof numbers up to the order of 15000, suggest that  i t  is also inhibited by 
the presence of boundaries. 

The research reported in this paper has been supported by the Atmospheric Science 
Section of U.S. National Science Foundation. Preliminary results of the study have 
been reported at the Fluid Dynamics Meeting of the American Physical Society a t  
Monterey, November 1981 (Nagata & Busse 1981). 
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